

CO-GENERATION PLANT ANNUAL STACK EMISSION TESTING - 2020

TOOHEYS PTY LTD

LIDCOMBE, NSW

PROJECT NO.: 7057/\$25550/20

DATE OF SURVEY: 09 MARCH 2020

DATE OF ISSUE: 27 MARCH 2020

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

52A Hampstead Road Auburn NSW 2144 Australia Tel: (02) 9737 9991 e-mail: info@stephensonenv.com.au

CO-GENERATION PLANT ANNUAL STACK EMISSION TESTING - 2020

TOOHEYS PTY LTD

LIDCOMBE, NSW

PROJECT NO.: 7057/S25550/20

DATE OF SURVEY: 09 MARCH 2020

DATE OF ISSUE: 27 MARCH 2020

PW STEPHENSON

J WEBER

TABLE OF CONTENTS

1	INTRODUCTION1					
2	Production Conditions					
3	EMISSION TEST RESULTS AND DISCUSSION					
	3.1	INTRODUCTION				
	3.2	Oxides of Nitrogen (NOx)				
	3.3	VOLATILE ORGANIC COMPOUNDS				
4		LUSIONS				
5	Test Methods					
	5.1	Exhaust Gas Velocity and Temperature				
	5.2	Continuous Gaseous Analysis				
	5.3	Volatile Organic Compounds (VOCs)				
	5.4	MEASUREMENT OF UNCERTAINTY				
APPEN	DIX A – I	EMISSION TEST RESULTS				
APPENDIX B – CONTINUOUS LOGGED DATA						
APPENDIX C – NATA ENDORSED TEST REPORT						
APPENDIX D – PRODUCTION DATA						
APPENDIX E - INSTRUMENT CALIBRATION DETAILS						
APPEN	dix F – S	TACK SAMPLING LOCATIONI				

TABLE OF TABLES

TABLE 1-1 EPL ID NO. 7 – EMISSION CONCENTRATION LIMITS AND MONITORING REQUIREMENTS	. 1
TABLE 3-1 SUMMARY OF AVERAGE EMISSION TEST RESULTS – 9 MARCH, 2020	. 4
TABLE 5-1 MEASUREMENT OF UNCERTAINITY	. 7

TABLE OF TABLES – APPENDICES

TABLE A-1 EMISSION TEST RESULTS - EPL ID NO.7 - FLOW & VOCS
Table E-1 Instrument Calibration Details

TABLE OF FIGURES – APPENDICES

FIGURE B-1 CONTINUOUS LOG OF NITROGEN OXIDES EMISSIONS IN PPM 9 MARCH 2020
--

1 INTRODUCTION

Stephenson Environmental Management Australia (SEMA) was requested by Tooheys Pty Ltd to assess emissions from the stack serving their Cogeneration Plant at their brewing facility at Lidcombe, New South Wales (NSW).

Tooheys operates under the NSW Office of Environment and Heritage (OEH) EPL No. 1167. Condition L3.4 specifies the emission concentration limits for the stack serving the Co-generation Plant (EPA Identification (ID) No. 7). The objective of this monitoring is to meet the requirements for EPA ID No. 7 and to determine if the specified emission concentration limits are met.

The emission tests were undertaken on 9 March 2020.

Parameter	Units of measure	Frequency	OEH test method	100% conc. limit	Reference condition	Oxygen correction
Volatile Organic Compounds (as n-propane)	mg/m ³	Annual	TM-34	40	Dry, 273k, 101.3kPa	5%
Nitrogen Oxides	mg/m ³	Annual	TM-11	250	Dry, 273k, 101.3kPa	5%
Dry Gas Density	kg/m ³	Annual	TM-23			
Moisture	%	Annual	TM-22		-	
Molecular Weight	g/g mole	Annual	TM-23			
Temperature	°C	Annual	TM-2			
Volumetric Flow Rate	m/s	Annual	TM-2			
Velocity	m³/s	Annual	TM-2			

Key:	mg/m ³ OEH TM mg/m ³ kg/m ³ %	= = = =	milligrams per cubic metre Office of Environment and Heritage Approved Test Method milligrams per cubic metre @ 0°C and 1 atmosphere kilograms per cubic metre percent
	g/g mole	=	grams per gram mole
	°C	=	degrees Celsius
	m/s	=	metres per second
	m ³ /s	=	cubic metres per second
	conc.	=	concentration
		=	no specified limit

2 **PRODUCTION CONDITIONS**

On the day of testing, the plant operating procedures and production rate were considered typical by Tooheys personnel. Refer to Appendix D for Screen Shots of Co-generation engine operating conditions for the day of testing.

In essence, the Co-generation Engine and associated waste heat boiler was producing of the order of 1.8 megawatts (MW) of power and steam on the day of testing.

3 EMISSION TEST RESULTS AND DISCUSSION

3.1 INTRODUCTION

SEMA completed all the sampling and analysis for velocity, flow, dry gas density, molecular weight of stack gases, temperature, moisture, Volatile Organic Compounds (VOCs), Oxygen (O_2) and Nitrogen Oxides (NO_x). SEMA is NATA accredited to ISO 17025 to complete the sampling and analysis for the above parameters. SEMA NATA accreditation number is 15043.

The VOC sample, collected by SEMA, was analysed by the NATA accredited Testsafe Australia, accreditation number 3726, Report No. 2020-1218.

The emission test results are summarised in table format in Table 3-1. Sections 3.2 and 3.3 provide a description of the results.

Refer to Appendix B for a graphical logged record of NO_x continuous emission analysis.

Appendix C presents SEMA's NATA endorsed Emission Test Report, No. 7057.

Details of the most recent calibration of each instrument used to take measurements is summarised in Appendix E, and the sample location is illustrated in Appendix F.

3.2 OXIDES OF NITROGEN (NO_x)

The one-hour average NO_x (expressed as NO₂) emission concentration during the sampling period was 80 parts per million (ppm) and when corrected to 5% O₂ was 239 milligrams per cubic metre (mg/m³). This emission concentration was in compliance with the Co-generation EPL NO_x concentration limit of 250 mg/m³ at 5% O₂. Refer to Table 3-1 and Figure B-1 in Appendix B for detailed results in tabulated and graphical formats respectively.

3.3 VOLATILE ORGANIC COMPOUNDS

The sum of the total VOC emission concentrations in the suite of 73 analytes is reported as n-propane equivalent as required by the NSW OEH Approved Methods and POEO (Clean Air) Regulation 2010.

The measured total VOCs emission concentration, reported as n-propane, was $<6.5 \text{ mg/m}^3$ at 5% O₂. Refer to Table 3-1 and Appendix C for details.

Parameter	Unit of measure	EPL ID No.7 Average Result	EPL Concentration Limit
Temperature	٥C	207	
Pressure	kPa	102.0	
Velocity	m/s	21	
Volumetric Flow	m³/s	1.9	
Moisture	%	11	
Molecular Weight Dry Stack Gas	g/g mole	29.4	
Gas Density	kg/m ³	1.31	
Nitrogen Oxides	$mg/m^3 @ 5\% O_2$	239	250
Oxygen	%	10.0	
Volatile Organic Compounds (as n-propane equivalent)	mg/m ³ @ 5% O ₂	<6.5	40

TABLE 3-1 SUMMARY OF AVERAGE EMISSION TEST RESULTS - 9 MARCH, 2020

Key:	EPL	=	Environment Protection Licence
-) -	°C	=	degrees Celsius
	kPa	=	kilo Pascals
	m/s	=	metres per second
	m ³ /s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
	%	=	percentage
	g/g mole	=	grams per gram mole
	kg/m ³	=	kilograms per cubic metre
	mg/m ³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)
	<	=	less than

4 CONCLUSIONS

From the data presented and test work conducted during typical production, the following conclusions were drawn for the stack emissions:

- The one-hour average NO_x emission concentration, corrected to 5% O₂, was 239 mg/m³, which was in compliance with the EPL NO_x emission limit of 250 mg/m³.
- All individual VOC parameters analysed were below the limit of detection for the analytical method employed.
- However, the total VOC emission concentration, which is calculated from the accumulation of these individual VOC non-detections; and then corrected to 5% O₂, was less than 6.5 mg/m³, which was in well in compliance with the EPL VOC emission limit of 40 mg/m³ (expressed as n-propane and corrected to 5% O₂).

Page 5

5 TEST METHODS

5.1 EXHAUST GAS VELOCITY AND TEMPERATURE

(OEH NSW TM-1 & 2)

Velocity profiles were obtained across each stack utilising an Airflow Developments Ltd. S-type pitot tube and digital manometer. Where practicable, each sampling plane complied with AS4323.1. The temperature of the exhaust gas was measured using a digital thermometer (0-1200°C) connected to a chromel/alumel (K-type) thermocouple probe.

5.2 CONTINUOUS GASEOUS ANALYSIS

(OEH NSW TM-11, 24, 25 & 32)

Sampling and analysis of exhaust gas were performed using one of Stephenson Environmental Management Australia's mobile combustion and environmental monitoring laboratories. Emission gases were distributed to the analysers via a manifold. Flue gas from each stack was pumped continuously. The following components of the laboratory were relevant to this work:

Oxides of Nitrogen	Testo 350XL
Oxygen	Testo 350XL
Calibration	BOC / Air Liquide Special Gas Mixtures relevant for each analyser. Instrument calibrations were performed at the start and finish of sampling at each location.
QA/QC	Calibration (Zero/Span) checks Sample line integrity calibration check

5.3 VOLATILE ORGANIC COMPOUNDS (VOCS)

(*OEH NSW TM-34*)

A sample of stack air is drawn onto a carbon adsorption tube and analysed using Gas Chromatography/Mass Spectrometry (GC/MS) performed by the NATA accredited laboratory TestSafe Australia, accreditation number, 3726.

5.4 MEASUREMENT OF UNCERTAINTY

All results are quoted on a dry basis. SEMA has adopted the following (Table 5-1) uncertainties for various stack emission testing methods.

TABLE 5-1 MEASUREMENT OF UNCERTAINITY

Pollutant	Methods	Uncertainty
Moisture	AS4323.2, TM-22, USEPA 4	25%
Nitrogen Oxides	NSW TM-11, USEPA 7E	15%
Oxygen	NSW TM-24, USEPA 3A	1% actual
Velocity	AS4323.1, TM-2, USEPA 2	5%
Volatile Organic Compounds (adsorption tube)	TM-34, USEPA M18	25%

Key:

Unless otherwise indicated the uncertainties quoted have been determined @ 95% level of Confidence level (i.e. by multiplying the repeatability standard deviation by a co-efficient equal to 1.96) (Source – Measurement Uncertainty)

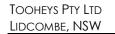
Sources: Measurement Uncertainty – implications for the enforcement of emission limits by Maciek Lewandowski (Environment Agency) & Michael Woodfield (AEAT) UK

Technical Guidance Note (Monitoring) M2 Monitoring of stack emissions to air Environment Agency Version 3.1 June 2005.

APPENDIX A – EMISSION TEST RESULTS

Glossary:

% =	percent
•C =	Degrees Celsius
am ³ /min =	cubic metre of gas at actual conditions per minute
Normal Volume (m ³) =	cubic metre at 0°C and 760 mm pressure and 1 atmosphere
am ³ =	cubic metre of gas at actual conditions
g/g mole =	grams per gram mole
g/s =	grams per second
hrs =	hours
$kg/m^3 =$	kilograms per cubic metre
kPa =	kilo Pascals
m ² =	square metre
m/s =	metre per second
m ³ /sec =	cubic metre per second at 0°C and 1 atmosphere
mg =	milligrams
$mg/m^3 =$	milligrams per cubic metre at 0°C and 1 atmosphere
O ₂ =	Oxygen
SEMA =	Stephenson Environmental Management Australia
VOC =	Volatile Organic Compounds
Abbreviations of Personnel	
PWS =	Peter Stephenson


		1
IW	=	Jay Weber

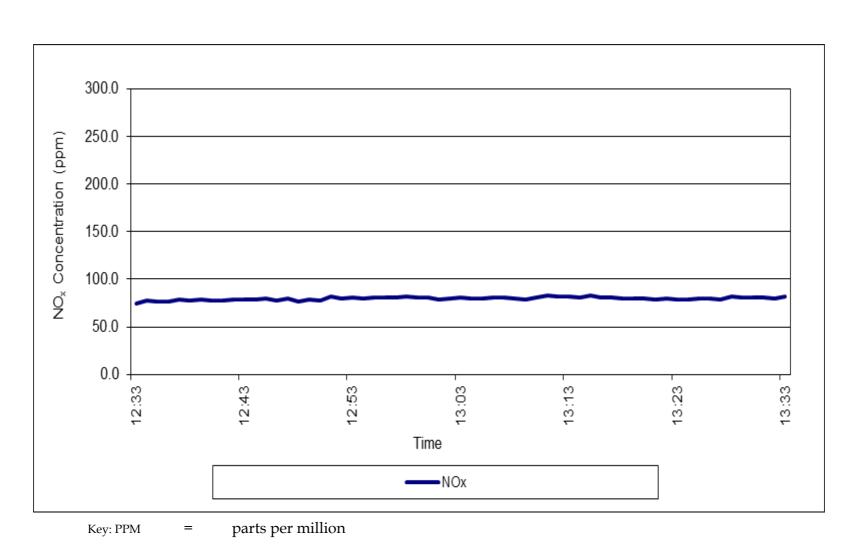

Emission Test Results	Flow & VOC's
Project Number	7057
Project Name	Tooheys
Test Location	EPA Point No.7 - Gas Engine
Date	9 March 2020
RUN	1
Sample Start Time (hrs)	9:45
Sample Finish Time (hrs)	10:45
Sample Location (Inlet/Exhaust)	Exhaust
Stack Temperature (°C)	207
Stack Cross-Sectional area (m ²)	0.181
Average Stack Gas Velocity (m/s)	21
Actual Gas Flow Volume (am ³ /min)	229
Total Normal Gas Flow Volume (m ³ /min)	116
Total Normal Gas Flow Volume (m ³ /sec)	1.9
Total Stack Pressure (kPa)	102.0
Moisture Content (% by volume)	11.4
Molecular Weight Dry Stack Gas (g/g-mole)	29.4
Dry Gas Density (kg/m ³)	1.31
Oxygen (%)	10.0
Carbon Dioxide (%)	6.2
Sampling Performed by	PWS, JW
Sample Analysed by (Laboratory)	SEMA
Calculations Entered by	JW
Calculations Checked by	PWS
VOCs Sample Start Time:	12:32
VOCe Sample Finish Time:	13.37

TABLE A-1 EMISSION TEST RESULTS - EPL ID NO.7 - FLOW & VOCS

VOCs Sample Start Time:	12:32
VOCs Sample Finish Time:	13:32
Sampling Period (min):	60
SEMA Sample No.:	727859
Concentration (mg/m ³) @ 5% O ₂	<6.9
Concentration as n-prop. Equiv. (mg/m ³) @ 5% O ₂	<6.5
Concentration (ppm)	<2.3

APPENDIX B – CONTINUOUS LOGGED DATA

FIGURE B-1 CONTINUOUS LOG OF NITROGEN OXIDES EMISSIONS IN PPM - 9 MARCH 2020

APPENDIX C - NATA ENDORSED TEST REPORT

Stephenson

Environmental Management Australia

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

> 52A Hampstead Road Auburn NSW 2144 Australia Tel: (02) 9737 9991 E-Mail: <u>info@stephensonenv.com.au</u>

Emissions Test Report No. 7057

The sampling and analysis was commissioned by:

Client	Organisation:	Tooheys Pty Ltd
	Contact:	Ian Porter
	Address:	29 Nyrang Street, Lidcombe NSW 2141
	Telephone:	02 9647 9414, 02 9647 9647
	Email:	Ian.Porter@lionco.com
	Project Number:	7057/S25550/20
	Test Date:	09/03/2020
	Production Conditions:	Normal operating conditions during testing
	Analysis Requested:	Flow, temperature, moisture, oxygen, nitrogen oxides, dry gas density and volatile organic compounds
	Sample Locations:	Co-Generation Engine Stack
	Sample ID Nos.:	See Attachment A
	This report cannot be reprod	luced except in full.

NATA accredited laboratory number 15043.

Accredited for Compliance with ISO/IEC 17025 - Testing.

Tooheys Pty Ltd Lidcombe, NSW	Co-Generation Plant Annual Emission Monitoring March 2020					
Identification	The samples are labelled individually. Each label recorded to testing laboratory, sample number, sampling location (Identification) sampling date and time and whether furthe analysis is required.					
Test	Test Method Number for Sampling and Analysis	NATA Laboratory Analysis By: NATA Accreditation No. & Report No.				
Dry Gas Density	NSW TM-23, USEPA M3	SEMA, Accreditation No. 15043, Emission Test Report 7057				
Flow	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, Emission Test Report 7057				
Moisture	NSW TM-22, USEPA M4	SEMA, Accreditation No. 15043, Emission Test Report 7057				
Molecular Weight of Stack Gases	NSW TM-23, USEPA M3	SEMA, Accreditation No. 15043, Emission Test Report 7057				
Oxides of Nitrogen	NSW TM-11, USEPA M7E	SEMA, Accreditation No. 15043, Emission Test Report 7057				
Oxygen	NSW TM-25, USEPA M3A	SEMA, Accreditation No. 15043, Emission Test Report 7057				
Stack Pressure	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, Emission Test Report 7057				
Stack Temperature	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, Emission Test Report 7057				
Velocity	NSW TM-2, USEPA M2	SEMA, Accreditation No. 15043, Emission Test Report 7057				
Volatile Organic Compounds	NSW TM-34, USEPA M18	TestSafe Accreditation No. 3726, Report No. 2020-1218				

Deviations from Test Methods	Nil
Sampling Times	NSW - As per Test Method requirements or if not specified in the Test Method then as per Protection of the Environment Operations (Clean Air) Regulations Part 2.
Reference Conditions	 NSW - As per (1) Environment Protection Licence conditions, or (2) Part 3 of the Protection of the Environment Operations (Clean Air) Regulations

All associated NATA endorsed Test Reports/Certificates of Analysis are provided separately in Attachment A.

Issue Date 27 March 2020

P W Stephenson Managing Director

Co-Generation Engine Stack – EPA ID No.7							
Date Tested - 09/03/2020							
Stack Emission Test Parameter Unit of measure Average Emission Test Res							
Temperature	°C	207					
Pressure	kPa	102.0					
Velocity	m/s	21					
Volumetric Flow	m³/s	1.9					
Moisture	%	11					
Molecular Weight Dry Stack Gas	g/g mole	29.4					
Gas Density	kg/m ³	1.31					
Nitrogen Oxides	mg/m ³ @ 5% O ₂	239					
Oxygen	%	10.0					
Volatile Organic Compounds (expressed as n-propane equivalent)	mg/m ³ @ 5% O ₂	<6.5					

SUMMARY OF THE AVERAGE EMISSION TEST RESULTS – TEST REPORT NO. 7057

Key:	٥C	=	degrees Celsius
	<	=	less than
	%	=	percentage
	kg/m ³	=	kilograms per cubic metre
	kPa	=	kilo Pascals
	g/g mole	=	grams per gram mole
	m ³ /s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
	m/s	=	metres per second
	mg/m ³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)

ESTIMATED UNCERTAINTY OF MEASUREMENT

Pollutant	Methods	Uncertainty
Moisture	AS4323.2, NSW TM-22, USEPA 4	25%
Nitrogen Oxides	NSW TM-11, USEPA 7E	15%
Oxygen	NSW TM-24, USEPA 3A	1% actual
Velocity	AS4323.1, NSW TM-2, USEPA 2	5%
Volatile Organic Compounds (adsorption tube)	NSW TM-34, USEPA 18	25%

Key:

Unless otherwise indicated the uncertainties quoted have been determined @ 95% level of Confidence level (i.e. by multiplying the repeatability standard deviation by a co-efficient equal to 1.96) (Source – Measurement Uncertainty)

Sources: Measurement Uncertainty – implications for the enforcement of emission limits by Maciek Lewandowski (Environment Agency) & Michael Woodfield (AEAT) UK

Technical Guidance Note (Monitoring) M2 Monitoring of stack emissions to air Environment Agency Version 3.1 June 2005.

ATTACHMENT A - NATA CERTIFICATES OF ANALYSIS

2020-1218

18/03/20

DATE RECEIVED:

Jay Weber Lab. Reference: Stephenson Environmental Management Australia PO Box 6398 SILVERWATER NSW 1811

Samples analysed as received

SAMPLE ORIGIN: Project No. 7057

DATE OF INVESTIGATION: 09/03/20

ANALYSIS REQUIRED: Volatile Organic Compounds

REPORT OF ANALYSIS

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the signatory whose signature appears below.

For all administrative or account details please contact the Laboratory.

Increment and total pagination can be seen on the following pages.

Martin Mazereeuw

Manager

Date: 25/03/20

TestSafe Australia – Chemical Analysis Branch Level 2, Bullding 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia T: +61 2 9473 4000 E: <u>lab@safework.nsw.gov.au</u> W: <u>testsafe.com.au</u> ABN 81 913 830 179

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025 - Testing

Page 1

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

Client : Jay Weber Sample ID : 727859

Date Sampled : 9-Mar-20 Reference Number le : 2020-1218-1

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	compounds	CASTIO	μg/se	ection		compounds	CADINO	µg/section	
	Aliphatic hydrocarbor	15 (LOQ - 5µg/co	impound/sect	ion)		Aromatic hydrocarbons	mpound/section)		
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1.2.4-Trimethylbenzene	95-63-6	ND	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	101-42-1-6 101-58-3	ND	ND
10	Cyclobexane	110-82-7	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOQ #49, #54 & #55	-5µg/c/s; #50, #51	1, #52 & #53	-25µg/c/s
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOQ - 25µg/compound/section)			
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	a-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
+	Chlorinated hydrocarl		11.02000.0	1.1020.075	60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1.1-Dichloroethane	75-34-3	ND	ND		Acetates (LOQ = 25µg/compound/section)			
26	1.2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1.1.1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOQ - 25µg/compound		- WE	1000
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND
32	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether ismis)	1634-04-4	ND	ND
33	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	109-99-9	ND	ND
34	Chlorobenzene	108-90-7	ND	ND		Glycols (LOQ - 25µg/compour		10.00	
35	1,2-Dichlorobenzene	95-50-1	ND	ND	69	PGME	107-98-2	ND	ND
36	1,4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
1	Miscellaneous (LOQ #37-				71	PGMEA	108-65-6	ND	ND
37	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND
38	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND
-	Total VOCs (LOQ =50µg/com	nound/section)	ND	ND		Worksheet check		ves	ves
_	sources (rod-selficou	peance section)	140		1			100	yes

2020-1218

Page 2 of 3

TestSafe Australia – Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

ND = Not Detected

Method : Analysis of Volatile Organic Compounds in Workplace Air by Gas Chromatography/Mass Spectrometry Method Number : WCA.207 Limit of Quantitation : 5µg/section; 25µg/section for oxygenated hydrocarbons except acetone, MEK and MIBK at

5ug/section.

spectron. Spectron : Volatile organic compounds are trapped from the workplace air onto charcoal tubes by the use of a personal air monitoring pump. The volatile organic compounds are then desorbed from the charcoal in the laboratory with CS_{\pm} An aliquot of the desorbant is analysed by capillary gas chromatography with mass spectrometry detection.

PGME : Propylene Glycol Monomethyl Ether PGMEA : Propylene Glycol Monomethyl Ether Acetate DGMEA : Diethylene Glycol Monoethyl Ether Acetate

Measurement Uncertainty

The measurement uncertainty is an estimate that characterises the range of values within which the true value is asserted The induction of the second se

Quality Assurance

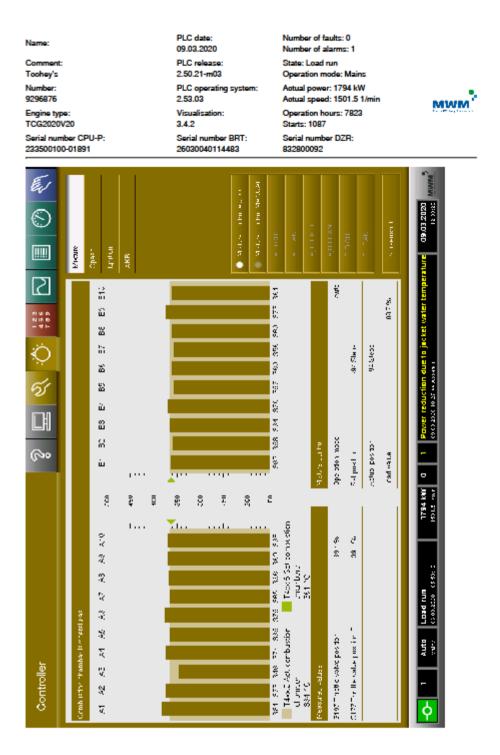
Quality Assurance
In order to ensure the highest degree of accuracy and precision in our analytical results, we undertake extensive intra-and inter-laboratory quality assurance (QA) activities. Within our own laboratory, we analyse laboratory and field blanks and perform duplicate and repeat analysis of samples. Spiked QA samples are also included routinely in each run to ensure the accuracy of the analyses. WorkCover Laboratory Services has participated for many years in several national and international inter-laboratory comparison programs listed below:-U Workplace Analysis Scheme for Proficiency (WASP) conducted by the Health & Safety Executive UK; Quality Management in Occupational and Environmental Medicine, QA Program, conducted by the Institute for Occupational, Social and Environmental Medicine, University of Erlangen – Nuremberg, Germany; Quality Management in the context laboratory.

- Quality Control Technologies QA Program, Australia;
 Royal College of Pathologists QA Program, Australia.

2020-1218

Page 3 of 3

TestSafe Australia - Chemical Analysis Branch


ABN 81 913 830 179 Level 2, Building 1, 9–15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

APPENDIX D – PRODUCTION DATA

Name: Comment: Toohey's Number: 9296876 Engine type: TCG2020V20 Serial number CPU-P: 233500100-01891		09.0 PLC 2.50 PLC 2.53 Visu 3.4.2 Seri:	alisatio	se: D3 ting s on: ber B	RT:	m:		Aotual Aotual	er of Load tion i pow spec tion i : 108 num	alarm i run mode er: 17 ed: 14 hours 7 ber D	ns: 1 : Mains 798 kW 199.2 1/min : 7823		MWM
erntas se utur		• -itel	a su alcuna a 🌒	lını Is	When	1.84	Ŧ	ent Köllik I- al- 🌘	• 1113	HX'1- 🌘	s di recci - Amare si s feiri - e - Anthre s	1 1-2014-1 %	CEDES 2023
2	i i i		Ş.	9 5	*	× ×	Ĩ		=	00			reduction due 10 jacket water temperature C 1026 w.oxxxx I
19 19 10 N 19 10 - 11 1-	1		ter etter	NI B JUNE	An rula.	li.e	200			SHOTE			o ket wat
<u>ਂ</u> ර	SCLE (income - 1 Suctorian E 204 Surpore		Photosophie and a straight of the	 Production data Blow Production data avente 	Le service du rite.	- O P TIMP (10				2111 (Curver process			due 10 j
				ĩψ		ľ				1	= 2		Paver reduction due (9.022201925 *******
СĤ									2				
600									Contraction of the second		• • • • • • • • • • • • • • • • • • • •		
									and a state	: !	8		D 000 2304
									1				14 1
				Į					2		© -		
									a state of the second secon		đ		101210 (142) 1
									Contraction of the second s		- \$: -		Auto vury 0
History				and a state of the							- 		- ¢

APPENDIX E – INSTRUMENT CALIBRATION DETAILS

SEMA Asset No.	Equipment Description	Date Last Calibrated	Calibration Due Date			
645	Stopwatch	03-Dec-19	03-Jun-20			
857	Digital Temperature Reader	02-Dec-19	02-Jun-20			
920	Thermocouple	02-Dec-19	02-Jun-20			
613	Barometer	05-Dec-19	05-Dec-20			
726	Pitot	23-Jul-19	23-Jul-2020 Visually inspected On-Site before use			
929	Calibrated Site Mass	26-Feb-20	26-Feb-21			
928	Balance	Response Check with SEMA Site Mass				
946	Combustion analyzer	09-Dec-19	09-Jun-20			
815	Digital Manometer	06-Dec-19	06-Dec-20			
	Gas Mixtures used for Ana	lyser Span Response				
Conc.	Mixture	Cylinder No.	Expiry Date			
262 ppm 263 ppm 249 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALWB 4441	23-Jun-21			
0.099% 9.8% 10.1%	Carbon Monoxide Carbon Dioxide Oxygen In Nitrogen	ALWB 5361	17-Jul-21			
400 ppm 400 ppm 401 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALWB6150	05-May-20			

TABLE E-1 INSTRUMENT CALIBRATION DETAILS

APPENDIX F - STACK SAMPLING LOCATION

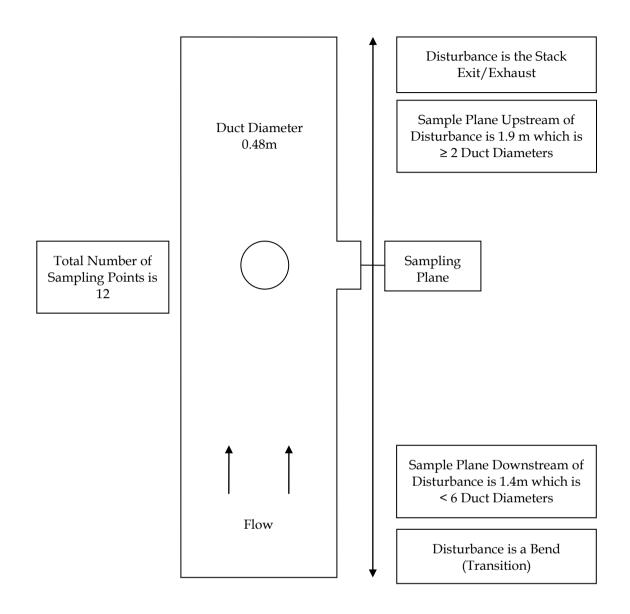


FIGURE F-1 CO-GENERATION ENGINE STACK – EPA ID NO. 7

In the absence of cyclonic flow activity ideal sampling plane conditions will be found to exist at 6-8 duct diameters downstream and 2-3 duct diameters upstream from a flow disturbance. The sampling plane does not meet this criterion. Additional sample points were used in compliance with AS4323.1 as the sampling plane was non-ideal.

However the sample plane does meet the minimum sampling plane position; sampling plane conditions will be found to exit at 2 duct diameters downstream and 0.5 duct diameters upstream from a flow disturbance.

The location of the sampling plane complies with AS4323.1 temperature, velocity and gas flow profile criteria for sampling.