

CO-GENERATION PLANT STACK EMISSION TESTING - 2018

TOOHEYS PTY LTD

LIDCOMBE, NSW

PROJECT NO.: 5938/S24635/18

DATE OF SURVEY: 12 MARCH 2018

DATE OF ISSUE: 29 MARCH 2018

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

52A Hampstead Road Auburn NSW 2144 Australia Tel: (02) 9737 9991 e-mail: info@stephensonenv.com.au

CO-GENERATION PLANT STACK EMISSION TESTING - 2018

TOOHEYS PTY LTD

LIDCOMBE, NSW

PROJECT NO.: 5938/S24635/18

DATE OF SURVEY: 12 MARCH 2018

DATE OF ISSUE: 29 MARCH 2018

PW STEPHENSON

J WEBER

TABLE OF CONTENTS

1	INTROD	INTRODUCTION1		
2	Production Conditions			
3	EMISSIC	ON TEST RESULTS AND DISCUSSION		
	3.1	INTRODUCTION		
	3.2	Oxides of Nitrogen (NOx)		
	3.3	VOLATILE ORGANIC COMPOUNDS		
4	CONC	LUSIONS		
5	TEST M	ETHODS6		
	5.1	Exhaust Gas Velocity and Temperature		
	5.2	Continuous Gaseous Analysis		
	5.3	Volatile Organic Compounds (VOCs)		
	5.4	MEASUREMENT OF UNCERTAINTY		
APPEN	DIX A –	EMISSION TEST RESULTS		
APPEN	dix B – (CONTINUOUS LOGGED DATA		
APPEN	DIX C –	NATA ENDORSED TEST REPORT		
APPEN	DIX D – I	PRODUCTION DATAI		
APPENDIX E - INSTRUMENT CALIBRATION DETAILS				
APPEN	dix F – S	TACK SAMPLING LOCATION		

TABLE OF TABLES

TABLE 1-1 EPL ID NO. 7 – EMISSION CONCENTRATION LIMITS AND MONITORING REQUIREMENTS	1
TABLE 3-1 SUMMARY OF AVERAGE EMISSION TEST RESULTS	4
TABLE 5-1 MEASUREMENT OF UNCERTAINITY	7

TABLE OF TABLES – APPENDICES

Table A-1 Emission Test Results – EPL ID No.7 – Flow & VOCs
Table E-1 Instrument Calibration Details II

TABLE OF FIGURES – APPENDICES

1 INTRODUCTION

Stephenson Environmental Management Australia (SEMA) was requested by Tooheys Pty Ltd to assess emissions from the stack serving their Cogeneration Plant at their brewing facility at Lidcombe, New South Wales (NSW).

Tooheys operates under the NSW Office of Environment and Heritage (OEH) EPL No. 1167. Condition L3.4 specifies the emission concentration limits for the stack serving the Co-generation Plant (EPA Identification (ID) No. 7). The objective of this monitoring is to meet the requirements for EPA ID No. 7 and to determine if the specified emission concentration limits are met.

The emission tests were undertaken on 12 March 2018.

Parameter	Units of measure	Frequency	OEH test method	100% conc. limit	Reference condition	Oxygen correction
Volatile Organic Compounds (as n-propane)	mg/m³	Annual	TM-34	40	Dry, 273k, 101.3kPa,	5%
Nitrogen Oxides	mg/m ³	Annual	TM-11	250	Dry, 273k, 101.3kPa,	5%
Dry Gas Density	kg/m ³	Annual	TM-23			
Moisture	%	Annual	TM-22			
Molecular Weight	g/g mole	Annual	TM-23			
Temperature	٥C	Annual	TM-2			
Volumetric Flow Rate	m/s	Annual	TM-2			
Velocity	m ³ /s	Annual	TM-2			

TABLE 1-1 EPL ID NO. 7 – EMISSION CONCENTRATION LIMITS AND MONITORING REQUIR	MENTS
--	-------

Key:		
mg/m^3	=	milligrams per cubic metre
OEH	=	Office of Environment and Heritage
ТМ	=	Approved Test Method
mg/m ³	=	milligrams per cubic metre @ 0°C and 1 atmosphere
kg/m ³	=	kilograms per cubic metre
%	=	percent
g/g mole	=	grams per gram mole
°C	=	degrees Celsius
m/s	=	metres per second
m ³ /s	=	cubic metres per second
conc.	=	concentration
	=	no specified limit

2 **PRODUCTION CONDITIONS**

On the day of testing, the plant operating procedures and production rate were considered typical by Tooheys personnel. Refer to Appendix D for Screen Shots of Co-generation engine operating conditions for the day of testing.

In essence, the Co-generation Engine and associated waste heat boiler was producing of the order of 2.0 megawatts (MW) of power and steam on the day of testing.

3 EMISSION TEST RESULTS AND DISCUSSION

3.1 INTRODUCTION

SEMA completed all the sampling and analysis for velocity, flow, dry gas density, molecular weight of stack gases, temperature, moisture, Volatile Organic Compounds (VOCs), Oxygen (O_2) and Nitrogen Oxides (NO_x). SEMA is NATA accredited to ISO 17025 to complete the sampling and analysis for the above parameters. SEMA NATA accreditation number is 15043.

The VOC sample, collected by SEMA, was analysed by the NATA accredited Testsafe Australia, accreditation number 3726, Report No. 2018-0996.

The emission test results are summarised in table format in Table 3-1. Sections 3.2 and 3.3 provide a description of the results.

Refer to Appendix B for a graphical logged record of NO_x continuous emission analysis.

Appendix C presents SEMA's NATA endorsed Emission Test Report, No. 5938.

Details of the most recent calibration of each instrument used to take measurements is summarised in Appendix E, and the sample location is illustrated in Appendix F.

3.2 OXIDES OF NITROGEN (NO_x)

The one-hour average NO_x (expressed as NO₂) emission concentration during the sampling period was 76 parts per million (ppm) and when corrected to 5% O₂ was 237 milligrams per cubic metre (mg/m³). This emission concentration was in compliance with the Co-generation EPL NO_x concentration limit of 250 mg/m³ at 5% O₂. Refer to Table 3-1 and Figure B-1 in Appendix B for detailed results in tabulated and graphical formats respectively.

3.3 VOLATILE ORGANIC COMPOUNDS

The sum of the total VOC emission concentrations in the suite of 73 analytes is reported as n-propane equivalent as required by the NSW OEH Approved Methods and POEO (Clean Air) Regulation 2010.

The measured total VOCs emission concentration as n-propane was less than 4.1 mg/m^3 (less than 6.3 mg/m^3 corrected to 5% O₂). Refer to Table 3-1 and Appendix C for details.

Parameter	Unit of measure	EPL ID No.7 Average Result	EPL Concentration Limit
Temperature	٥C	262	
Pressure	kPa	101.8	
Velocity	m/s	26.3	
Volumetric Flow	m³/s	2.19	
Moisture	%	10.4	
Molecular Weight Dry Stack Gas	g/g mole	29.3	
Gas Density	kg/m ³	1.31	
Nitrogen Oxides	mg/m ³ @ 5% O ₂	237	250
Oxygen	%	10.4	
Volatile Organic Compounds	mg/m ³ @ 5% O ₂ as n-propane equivalent	<6.3	40

TABLE 3-1 SUMMARY OF AVERAGE EMISSION TEST RESULTS

Key:		
EPL	=	Environment Protection Licence
°C	=	degrees Celsius
kPa	=	kilo Pascals
m/s	=	metres per second
m ³ /s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
%	=	percentage
g/g mole	=	grams per gram mole
kg/m ³	=	kilograms per cubic metre
mg/m ³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)
<	=	less than

4 CONCLUSIONS

From the data presented and test work conducted during typical production, the following conclusions were drawn for the stack emissions:

- The one-hour average NO_x emission concentration, corrected to 5% O₂, was 237 mg/m³, which was in compliance with the EPL NO_x emission limit of 250 mg/m³.
- The VOC emission concentration corrected to 5% O₂ was <6.3 mg/m³, which was in compliance with the EPL VOC emission limit of 40 mg/m³ (expressed as n-propane).

5 TEST METHODS

5.1 EXHAUST GAS VELOCITY AND TEMPERATURE

(OEH NSW TM-1 & 2)

Velocity profiles were obtained across each stack utilising an Airflow Developments Ltd. S-type pitot tube and digital manometer. Where practicable, each sampling plane complied with AS4323.1. The temperature of the exhaust gas was measured using a digital thermometer (0-1200°C) connected to a chromel/alumel (K-type) thermocouple probe.

5.2 CONTINUOUS GASEOUS ANALYSIS

(OEH NSW TM-11, 24, 25 & 32)

Sampling and analysis of exhaust gas were performed using one of Stephenson Environmental Management Australia's mobile combustion and environmental monitoring laboratories. Emission gases were distributed to the analysers via a manifold. Flue gas from each stack was pumped continuously. The following components of the laboratory were relevant to this work:

Oxides of Nitrogen	Testo 350XL
Oxygen	Testo 350XL
Calibration	BOC / Air Liquide Special Gas Mixtures relevant for each analyser. Instrument calibrations were performed at the start and finish of sampling at each location.
QA/QC	Calibration (Zero/Span) checks Sample line integrity calibration check

5.3 VOLATILE ORGANIC COMPOUNDS (VOCS)

(*OEH NSW TM-34*)

A sample of stack air is drawn onto a carbon adsorption tube and analysed using Gas Chromatography/Mass Spectrometry (GC/MS) performed by the NATA accredited laboratory TestSafe Australia, accreditation number, 3726.

5.4 MEASUREMENT OF UNCERTAINTY

All results are quoted on a dry basis. SEMA has adopted the following (Table 5-1) uncertainties for various stack emission testing methods.

TABLE 5-1 MEASUREMENT OF UNCERTAINITY

Pollutant	Methods	Uncertainty
Moisture	AS4323.2, TM-22, USEPA 4	25%
Nitrogen Oxides	NSW TM-11, USEPA 7E	15%
Oxygen	NSW TM-24, USEPA 3A	1% actual
Velocity	AS4323.1, TM-2, USEPA 2	5%
Volatile Organic Compounds (adsorption tube)	TM-34, USEPA M18	25%

Key:

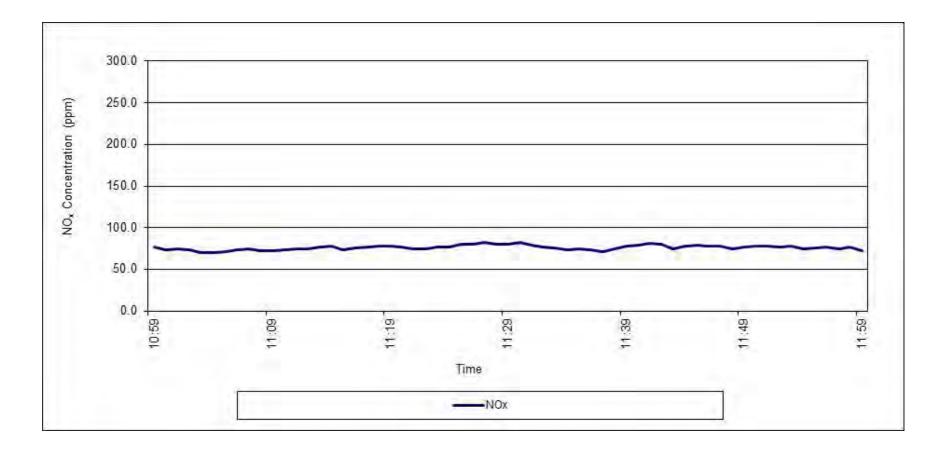
Unless otherwise indicated the uncertainties quoted have been determined @ 95% level of Confidence level (i.e. by multiplying the repeatability standard deviation by a co-efficient equal to 1.96) (Source – Measurement Uncertainty)

Sources: Measurement Uncertainty – implications for the enforcement of emission limits by Maciek Lewandowski (Environment Agency) & Michael Woodfield (AEAT) UK

Technical Guidance Note (Monitoring) M2 Monitoring of stack emissions to air Environment Agency Version 3.1 June 2005.

APPENDIX A – EMISSION TEST RESULTS

Glossary:


% =	percent
•C =	Degrees Celsius
$am^3/min =$	cubic metre of gas at actual conditions per minute
Normal Volume (m ³) =	cubic metre at 0°C and 760 mm pressure and 1 atmosphere
am ³ =	cubic metre of gas at actual conditions
g/g mole =	grams per gram mole
g/s =	grams per second
hrs =	hours
$kg/m^3 =$	kilograms per cubic metre
kPa =	kilo Pascals
m ² =	square metre
m/s =	metre per second
m ³ /sec =	cubic metre per second at 0°C and 1 atmosphere
mg =	milligrams
$mg/m^3 =$	milligrams per cubic metre at 0°C and 1 atmosphere
O ₂ =	Oxygen
SEMA =	Stephenson Environmental Management Australia
VOC =	Volatile Organic Compounds
Abbreviations of Personnel	
PWS =	Peter Stephenson

IW	=	Jay Weber

Emission Test Results	Flow & VOC's						
Project Number	5938						
Project Name	Tooheys						
Test Location	EPA ID Point No.7 - Gas Engine						
Date	12 March 2018						
RUN	1						
Sample Start Time (hrs)	10:50						
Sample Finish Time (hrs)	12:05						
Sample Location (Inlet/Exhaust)	Exhaust						
Stack Temperature (°C)	262						
Stack Cross-Sectional area (m ²)	0.181						
Average Stack Gas Velocity (m/s)	26.3						
Actual Gas Flow Volume (am ³ /min)	286						
Total Normal Gas Flow Volume (m ³ /min)	131						
Total Normal Gas Flow Volume (m ³ /sec)	2.19						
Total Stack Pressure (kPa)	101.8						
Moisture Content (% by volume)	10.4						
Molecular Weight Dry Stack Gas (g/g-mole)	29.34						
Dry Gas Density (kg/m ³)	1.31						
Oxygen (%)	10.4						
Carbon Dioxide (%)	5.8						
Sampling Performed by	PWS, JW						
Sample Analysed by (Laboratory)	SEMA						
Calculations Entered by	JW						
Calculations Checked by	PWS						
Volatile Organic Compounds							
VOCs Sample Start Time:	11:01						
VOCs Sample Finish Time:	12:01						
Sampling Period (min):	60						
SEMA Sample No.:	726863						
Concentration (mg/m ³) @ 5% O ₂	<6.6						
Concentration as n-propane equivelent $(mg/m^3) @ 5\% O_2$	<6.3						

TABLE A-1 EMISSION TEST RESULTS - EPL ID NO.7 - FLOW & VOCS

APPENDIX B – CONTINUOUS LOGGED DATA

FIGURE B-1 CONTINUOUS LOG OF NITROGEN OXIDES EMISSIONS @ 5% O2 12 MARCH 2017

APPENDIX C - NATA ENDORSED TEST REPORT

Client

Stephenson

Environmental Management Australia

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526

52A Hampstead Road Auburn NSW 2144 Australia Tel: (02) 9737 9991 E-Mail: info@stephensonenv.com.au

Emissions Test Report No. 5938

The sampling and analysis was commissioned by:

Organisation:	Tooheys Pty Ltd
Contact:	Paul Kiely
Address:	29 Nyrang Street Lidcombe NSW 2141
Telephone:	9647 9647
Email:	paul.kiely@lionco.com
Project Number:	5938/S24635/18
Test Date:	12/03/2018
Production Conditions:	Normal operating conditions during testing
Analysis Requested:	Flow, temperature, moisture, Oxygen, Nitrogen Oxides, Dry Gas Density and Volatile Organic Compounds
Sample Locations:	Co-Generation Engine Stack
Sample ID Nos.:	See Attachment A
This report cannot be repr	oduced except in full.

NATA accredited laboratory number 15043.

Accredited for Compliance with ISO/IEC 17025.

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

VERSION: 2.1

EMISSION TEST REPORT NO.5938

 Deviations from Test Methods
 Nil

 Sampling Times
 NSW - As per Test Method requirements or if not specified in the Test Method then as per Protection of the Environment Operations (Clean Air) Regulations Part 2.

 Reference Conditions
 NSW - As per

 (1) Environment Protection Licence conditions, or
 (2) Part 3 of the Protection of the Environment Operations (Clean Air) Regulations

All associated NATA endorsed Test Reports/Certificates of Analysis are provided separately in Attachment A.

Issue Date 27 March 2018

P W Stephenson Managing Director

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

VERSION: 2.1

EMISSION TEST REPORT NO.5938

ATTACHMENT A - NATA CERTIFICATES OF ANALYSIS

Stephenson Environmental Management Australia

VERSION: 2.1

Jay Weber Lab. Reference: 2018-0996 Stephenson Environmental Management Australia PO Box 6398 SILVERWATER NSW 1811

SAMPLE ORIGIN: Project No. 5938

DATE OF INVESTIGATION: 12/03/2018

DATE RECEIVED: 14/03/18

ANALYSIS REQUIRED: Volatile Organic Compound Screen

REPORT OF ANALYSIS

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the signatory whose signature appears below.

For all administrative or account details please contact the Laboratory.

Increment and total pagination can be seen on the following pages.

Martin Mazereeuv

Manager

Date: 22/03/18

TestSafe Australia – Chemical Analysis Branch Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia T: +61 2 9473 4000 E: lab@safework.nsw.gov.au W: testsafe.com.au ABN 81 913 830 179

Accredited for compliance with ISO/IEC 17025

Client : Jay Weber

Date Sampled : 12-Mar-2018

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

No	Compounds	CAS No	Front	Back.	No	Compounds	CAS No	Front	Back	
+	Aliphatic hydrocarbon	5 /1 00 = Supley	1.8		+	Aromatic hydrocarbons (1.0Q = 1µg/		AB		
1	2-Methylbutane	78-78-4	ND	ND	39	Benzenc	2/-43-2	ND	ND	
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-11-4	ND	ND	
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND	
4	3-Methylpentane	96-14-0	ND	ND	42	1.2.3-Trimethylbenzene	526-73-8	ND	ND	
5	Cyclopentane	287-92-3	ND	ND	43	1.2.4-Trimethylbenzene	95-63-6	ND	ND	
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND	
7	2.3-Dimethylpentane	565-59-3	ND	ND	45	Styrenc	100-42-5	ND	ND	
8	a-Hexane	110-54-3	ND	ND	46	Toluenc	108-88-5	ND	ND	
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	108-42-1-4 109-38-1	ND	ND	
10	Cyclohexane	110-82-7	ND	ND	48	o-Xylene	95-47-6	ND	ND	
u	Methylcyclohexane	108-87-2	ND	ND		Ketones (1.00 #49, #54 & #55		, #52 & #53	25µg/c/s	
12	2.2.4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND	
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND	
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND	
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND	
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND	
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND	
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK		ND	ND	
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOQ = 25µg/compound/section)				
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND	
21	a-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND	
22	β-Pinene	117-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND	
23	D-Limonene	138-86-3	ND	ND	59	isopropyl alcohol	67-63-0	ND	ND	
	Chlorinated hydrocart	ons (LOQ - 5p	g/compound/	section)	60	2-Ethyl hexanol	104-76-7	ND	ND	
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND	
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOQ = 25/12/compound/section)				
26	1.2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND	
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND	
28	1.1.1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND	
29	1.1.2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND	
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOQ = 25µg/compound/section)		-		
31	Carbon tetrachloride	\$6-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND	
32	Perchloroethylene	127-18-4	ND	ND	67	teri-Butyl methyl other orms)	1634-04-4	ND	ND	
33	1,1.2,2-Tetrachioroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	1119-99-9	ND	ND	
34	Chlorobenzene	108-90-7	ND	ND	1.00	Glycols (LOQ - 25µg/compou	nd/section)	-	-	
35	1.2-Dichlorobenzene	95-50-2	ND	ND	69	PGME	107-98-2	ND	ND	
36	1.4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND	
	Miscellaneous (Log #37-	5µg & 838=25µg/	compound/see	ction)	71	PGMEA	108-65-6	ND	ND	
37	Acetonitfile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND	
38	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND	
		nound/section)	ND	ND	-	Worksheet check		YES	YES	

2018-0996.clsx

Page 2 of 3

TestSafe Australia - Chemical Analysis Branch ABN 81 913 830 179 Level 2, Building 1, 9+15 Chilvers Road, Thomleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025 - Testing

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

Client : Jay Weber

Sample ID : 726863

ND - Not Detected

Method : Analysis of Volatile Organic Compounds in Workplace Air by Gas Chromatography/Mass Spectrometry Method Number / WCA.207 Limit of Quantitation / 5µg/section; 25µg/section for oxygenated hydrocarbons except acetone, MEK and MIBK at

Sug/sect Spectron in the second state of the second st

PGME : Propylene Glycol Monomethyl Ether

PGMEA : Propylene Glycol Monomethyl Ether Acetate DGMEA : Diethylene Glycol Monoethyl Ether Acetate

Measurement Uncertainty

Measurement Uncertainty The measurement uncertainty is an estimate that characterises the range of values within which the true value is asserted to lie. The uncertainty estimate is an expanded uncertainty using a coverage factor of 2, which gives a level of confidence of approximately 95%. The estimate is compliant with the "ISO Guide to the Expression of Uncertainty in Measurement" and is a full estimate based on in-house method validation and quality control data.

Quality Assurance In order to ensure the highest degree of accuracy and precision in our analytical results, we undertake extensive intra- and inter-faboratory quality assurance (QA) activities. Within our own laboratory, we analyse laboratory and field blanks and perform duplicate and repeat analysis of samples. Spiked QA samples are also included routinely in each run to ensure the accuracy of the analyses. WorkCover Laboratory Services has participated for many years in several national and international inter-faboratory comparison programs listed below: Workplace Analysis Scheme for Proficiency (WASP) conducted by the Health & Safety Executive UK;
Quality Management in Occupational and Environmental Medicine QA Program, conducted by the lastitute for Occupational, Social and Environmental Medicine, University of Erlangen – Nuremberg, Germany;
Quality Management in Cacupational Arguman, Australia;

Quality Control Technologies QA Program, Australia;
 Royal College of Pathologists QA Program, Australia.

2018-0996.xlsx

Page 3 of 3

TestSafe Australia - Chemical Analysis Branch

ABN 81 913 830 179 Level 2, Building 1, 9-15 Chilvers Road, Thornleigh, NSW 2120, Australia Telephone +61 2 9473 4000 Email lab@safework.nsw.gov.au Website testsafe.com.au

Accreditation No. 3726 Accredited for compliance with ISO/IEC 17025 - Testing

SW08051 0817

STEPHENSON ENVIRONMENTAL MANAGEMENT AUSTRALIA

APPENDIX D – PRODUCTION DATA

Screenshot

12/06/2010 - 2nd eng 09/2014 PLC-date = 12.03.2018 12:18:41 PLC release = 2.29.43 Comment: Toohey's

Number of faults = 0 Number of alarms = 1 Operation hours = 43130 Number: 9296876 Engine type: TCG2020V20

Actual load = 1918 kW Actual speed = 1498.9 1/min Starts = 2645

269 °C 305 °C 305 °C Deration mode 300 °C 309 °C E196,7 Demand active 276 °C 359 °C E196,3 Internal set power 276 °C 359 °C E196,5 Internal set power 276 °C 317 °C E196,5 Power familiactive 276 °C 317 °C E196,6 Power familiactive 291 °C 313 °C E196,8 Power familiactive 291 °C 313 °C E196,8 Set power 314 °C 313 °C E196,8 Coulai power 328 °C 404 °C E198,4 Set power 328 °C 347 °C 333 °C 320 °C 333 °C Thotte valve 347 °C 321 °C Thotte valve 347 °C 321 °C Thotte valve 318 °C 580 °C Thotte valve 318 °C 580 °C Al and gas pressure A 241 Steps Al and gas pressure A 241 Steps Al and gas pressure A	Meins Meins 94.5% Braing crouits 94.6% Ar/Generator 94.6% Wastogate
*C 309 *C E196.7 Demand active *C 359 *C E196.7 Demand active *C 317 *C E196.8 Internal set power *C 317 *C E196.8 Power switch *C 317 *C E196.8 Power smitch *C 313 *C E196.8 Power limit *C 313 *C E196.2 Actual power *C 333 *C S200 Engine speed *C 321 *C Throttle valve *C 321 *C Throttle valve *C 58.0 *C S200 Engine speed *C 58.0 *C S201 Engine speed *C 58.0 *C Throttle valve *C 58.0 *C S14.5 *C *C 58.0 *C S20.5 *C *C 58.0 *C S20.5 *C *C 58.0 *C S18.5 *C *C 58.6 *C S20.5 *C *C 58.6 *C S20.5 *C *C 58.6 *C S20 *C *C 58.6 *C S20 *C *C <t< td=""><td>91.5% 94.5% 94.6% 94.6%</td></t<>	91.5% 94.5% 94.6% 94.6%
C 359 °C E196.3 Internal set power *C 317 *C Power switch *C 317 *C Flower switch *C 326 °C E196.6 Powei Imnt *C 313 °C E196.4 Set power *C 313 °C E196.4 Set power *C 333 °C E196.2 ACtual power *C 347 °C E196.2 Actual power *C 347 °C Throttle value *C 321 °C S200 Engine speed *C 321 °C Throttle value *C 58.0 °C A1 and gas pressure A *C S80 °C A1 and gas pressure A	945% 946% 946%
*C 317 *C Power switch *C 326 *C E196.6 Power limit *C 313 *C E196.6 Power limit *C 313 *C E196.6 Power *C 313 *C E196.2 Actual power *C 335 *C S200 Engine speed *C 321 *C Throttle valve *C 58.0 *C Art and gas pressure A *C 58.0 *C Art and gas pressure A *C 58.0 *C Art and gas pressure A	94.6% 94.6% 04.6%
*C 326 *C E196.6 Powel finit *C 313 *C E196.4 Set power *C 404 *C E196.4 Set power *C 333 *C S200 Engine speed *C 347 *C Throttle value *C 347 *C Frottle value *C 347 *C Frottle value *C 321 *C S200 Engine speed *C 321 *C Throttle value *C 58.0 *C Sant *C 58.0 *C Sant *C Steps At and gas pressure A Steps At and gas pressure A	
C 313 * C E198.4 Set power *C 404 * C E198.2 Actual power *C 333 * C S200 Engine speed *C 347 * C Throttle valve *C 321 * C Throttle valve *C 58.0 * C S8.0 * C *C 58.0 * C At and gas pressure A *C 58.0 * C S1 * C *C 58.0 * C S1 * C *C 58.0 * C At and gas pressure A *C Steps At and gas pressure A	
C 404 *C E196.2 Actual power *C 333 *C S200 Engine speed *C 347 *C Thruttle valve *C 321 *C Thruttle valve *C 58.0 *C Flaintle valve *C 58.0 *C At and gas pressure A *C 58.0 *C At and gas pressure A *C Steps Steps	
*C 333 *C S200 Engine speed *C 347 *C Throttle value *C 321 *C Throttle value *C 321 *C East all *C 58.0 *C East all	275
 C 347 °C Throttle value C 321 °C °C 580 °C °C 580 °C Gas rail °C A1 and gas pressure A Steps 	1493.91/min Data/counted measurands
*C 321 *C *C 58.0 *C *C *C Steps	64.4% 64.4% Operating Information
*C 58.0 *C *C Steps Steps	
*C *C Steps	
°C Steps Steps	
-241 Steps BUU Steps	0 >
800 Steps	
Chosen gas type A	3.A.
Dual gas state Uperation	Operation with gas type A

Screenshot

12/06/2010 - 2nd eng 09/2014 PLC-date = 12.03.2018 12:21:32 PLC release = 2.29.43 Comment: Toohey's

Number of faults = 0 Number of alarms = 1 Operation hours = 43130 Number: 9296876 Engine type: TCG2020V20

Actual load = 1906 kW Actual speed = 1497.9 1/min Starts = 2645

	6 minutes V	 Reload Update 	Absolute time	Save Load	Print history Fic manuality outlive Indy. Pouse	nshot	hi 12.03.2018
2	84 B.		65 B	328 314 61 8			tral swite
<u>با المعام</u>	=19824ct pwer	- SENVERIAMA UNKNO	Safet Throthe volve Safet Throthe volve Safet - Star invertion	T47X7 Com cham B aver. T46X7 Com0.chander aver. T201 Receiver	- TSD2 Intrue air	П	Exxx Earth leakage monitor control switchi
G ©			man Marian			12.11.1996 - 12.21.31	0 1 EXXX Ear
	E1982.4ct puter		manument				1905 kW
			ĩ			-12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	to Load run
History			Andrewson			90- 	Auto

Screenshot

12/06/2010 - 2nd eng 09/2014 PLC-date = 12.03.2018 12:17:06 PLC release = 2.29.43 Comment: Toohey's

Number of faults = 0 Number of alarms = 1 Operation hours = 43130 Number: 9296876 Engine type: TCG2020V20

Actual load = 1928 kW Actual speed = 1499.4 1/min Starts = 2645

APPENDIX E – INSTRUMENT CALIBRATION DETAILS

SEMA Asset No.	Equipment Description	Date Last Calibrated	Calibration Due Date	
645	Stopwatch	16-Jan-18	16-Jul-18	
858	Digital Temperature Reader	16-Jan-18	16-Jul-18	
720	Thermocouple	05-Feb-18	05-Aug-18	
613	3 Barometer 05-Feb-18		05-Feb-19	
726	Pitot 03-Jun-17		03-Jun-2018 Visually inspected On-Site before use	
929	Calibrated Site Mass	22-Mar-17	22-Mar-18	
928	Balance		Response Check with SEMA Site Mass	
946	combustion analyzer	05-Feb-18	05-Aug-18	
932	Personal Sampler	28-Sep-17	28-Sep-18	
	Gas Mixtures used for	Analyser Span Response	2	
Conc.	Mixture	Cylinder No.	Expiry Date	
262 ppm 263 ppm 249 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALWB 4441	23-Jun-21	
0.099% 9.8% 10.1%	Carbon Monoxide Carbon Dioxide Oxygen In Nitrogen	ALWB 5361	17-Jul-21	
400 ppm 400 ppm 401 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen Sulphur Dioxide In Nitrogen	ALWB6150	05-May-20	

TABLE E-1 INSTRUMENT CALIBRATION DETAILS

APPENDIX F - STACK SAMPLING LOCATION

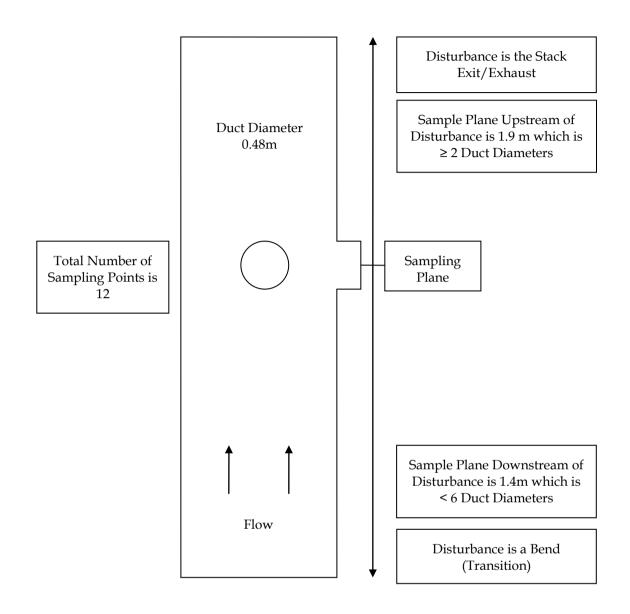


FIGURE F-1 CO-GENERATION ENGINE STACK – EPA ID NO. 7

In the absence of cyclonic flow activity ideal sampling plane conditions will be found to exist at 6-8 duct diameters downstream and 2-3 duct diameters upstream from a flow disturbance. The sampling plane does not meet this criterion. Additional sample points were used in compliance with AS4323.1 as the sampling plane was non-ideal.

However the sample plane does meet the minimum sampling plane position; sampling plane conditions will be found to exit at 2 duct diameters downstream and 0.5 duct diameters upstream from a flow disturbance.

The location of the sampling plane complies with AS4323.1 temperature, velocity and gas flow profile criteria for sampling.