

CO-GENERATION PLANT STACK EMISSION TESTING - ANNUAL, 2014

TOOHEYS PTY LTD

LIDCOMBE, NSW

PROJECT NO.: 5449/\$23558/14

DATE OF SURVEY: 4 DECEMBER 2014

DATE OF ISSUE: 10 DECEMBER 2014

Peter W Stephenson & Associates Pty Ltd ACN 002 600 526 (Incorporated in NSW) ABN 75 002 600 526 Newington Business Park Unit 7/2 Holker Street Newington NSW 2127 Australia Tel: (02) 9737 9991 Fax: (02) 9737 9993 e-mail: info@stephensonenv.com.au

CO-GENERATION PLANT STACK EMISSION TESTING - ANNUAL, 2014

TOOHEYS PTY LTD

LIDCOMBE, NSW

PROJECT NO.: 5449/\$23558/14

DATE OF SURVEY: 4 DECEMBER 2014

DATE OF ISSUE: 10 DECEMBER 2014

PW STEPHENSON

A MCGHIE

A PRADHAN

TABLE OF CONTENTS

1	INTRODUCTION1					
2	Production Conditions					
3	Emiss	ION TEST RESULTS AND DISCUSSION				
	3.1	INTRODUCTION				
	3.2	Oxides of Nitrogen (NOx)				
	3.3	Volatile Organic Compounds				
4	CON	CLUSIONS				
5	TEST A	Aethods				
	5.1	Exhaust Gas Velocity and Temperature				
	5.2	Continuous Gaseous Analysis				
	5.3	Volatile Organic Compounds (VOCs)				
	5.4	Measurement of Uncertainty				
APPEN	dix A -	- EMISSION TEST RESULTS				
APPEN	dix B –	CONTINUOUS LOGGED DATA				
APPENDIX C – NATA ENDORSED TEST REPORT						
APPENDIX D – PRODUCTION DATA						
APPEN	dix E –	INSTRUMENT CALIBRATION DETAILS				
APPEN	dix F –	STACK SAMPLING LOCATION				
APPEN	DIX G -	- OEH – CO-GENERATION AND TRI-GENERATION DOCUMENT				

TABLE OF TABLES

TABLE 1-1 EPL ID NO. 7 – EMISSION CONCENTRATION LIMITS AND MONITORING REQUIREMENTS	, 1
Table 3-1 Summary of Average Emission Test Results	, 4
Table 5-1 Measurement of Uncertainity	. 7

TABLE OF TABLES – APPENDICES

TABLE A-1	Emission Test Results – EPL ID No.7 – Flow & VOCs	I
Table E-1	Instrument Calibration Details	1

TABLE OF FIGURES – APPENDICES

FIGURE B-1 CONTINUOUS LOG OF NITROGEN OXIDES EMISSIONS @ 5% O2 4 DECEMBER 2014......

1 INTRODUCTION

Stephenson Environmental Management Australia (SEMA) was requested by Tooheys Pty Ltd to assess emissions from the stack serving their Cogeneration Plant at their brewing facility at Lidcombe, New South Wales (NSW).

Tooheys operates under the NSW Office of Environment and Heritage (OEH) EPL No. 1167. Condition L3.4 specifies the emission concentration limits for the stack serving the Co-generation Plant (EPA Identification (ID) No. 7). The objectives of this were to meet the requirements for EPA ID No. 7 and to determine if the specified emission concentration limits were met.

The tests were undertaken on 4 December 2014.

Parameter	Units of measure	Frequency	OEH test method	100% conc. limit	Reference condition	Oxygen correction
Volatile Organic Compounds (as n-propane)	mg/m ³	Annual	TM-34	40	Dry, 273k, 101.3kPa,	5%
Nitrogen Oxides	mg/m ³	Annual	TM-11	250	Dry, 273k, 101.3kPa,	5%
Dry Gas Density	kg/m ³	Annual	TM-23			
Moisture	%	Annual	TM-22			
Molecular Weight	g/g mole	Annual	TM-23			
Temperature	٥C	Annual	TM-2			
Volumetric Flow Rate	m/s	Annual	TM-2			
Velocity	m ³ /s	Annual	TM-2			

TABLE 1-1	EPL ID NO	7 – EMISSION	CONCENTRATION LIMI	its and Monitoring	
-----------	-----------	--------------	---------------------------	---------------------------	--

Key:		
mg/m ³	=	milligrams per cubic metre
OĔH	=	Office of Environment and Heritage
TM	=	Approved Test Method
mg/m ³	=	milligrams per cubic metre @ 0°C and 1 atmosphere
kg/m ³	=	kilograms per cubic metre
%	=	percent
g/g mole	=	grams per gram mole
٥C	=	degrees Celsius
m/s	=	metres per second
m ³ /s	=	cubic metres per second
conc.	=	concentration
	=	no specified limit

2 **PRODUCTION CONDITIONS**

On the day of testing, the plant operating procedures and production rate were considered typical by Tooheys personnel. Refer to Appendix D for Screen Shots of Co-generation engine operating conditions for the day of testing.

In essence, the Co-generation Engine and associated waste heat boiler was producing of the order of 2.0 megawatts (MW) of power and steam on the day of testing.

Tooheys advise that this engine was designed by the manufacturer to meet an emission specification corrected to 5% Oxygen (O_2). This has been acknowledged by OEH because co-generation is considered by OEH to be best available technology and thus, has been confirmed in OEH Interim NO_x for Policy for Co-generation in Sydney and the Illawarra, which is presented in Appendix G.

This policy concept of 5% oxygen reference correction for co-generation plant emissions has now been incorporated into EPL 1167 for the Tooheys brewery site.

3 EMISSION TEST RESULTS AND DISCUSSION

3.1 INTRODUCTION

SEMA completed all the sampling and analysis for velocity, flow, dry gas density, molecular weight of stack gases, temperature, moisture, Volatile Organic Compounds (VOCs), Oxygen (O_2) and Nitrogen Oxides (NO_x). SEMA is NATA accredited to ISO17025 to complete the sampling and analysis for the above parameters. SEMA NATA accreditation number is 15043.

The VOC sample, collected by SEMA, was analysed by the NATA accredited Testsafe Australia, accreditation number 3726, Report No. 2014-2920.

The emission test results are summarised in table format in Table 3-1. Sections 3.2 and 3.3 provide a description of the results.

Refer to Appendix B for a graphical logged record of NO_x continuous emission analysis.

Appendix C presents SEMA's NATA endorsed Emission Test Report, No. 5449.

Details of the most recent calibration of each instrument used to take measurements is summarised in Appendix E, and the sample location is illustrated in Appendix F.

3.2 OXIDES OF NITROGEN (NO_x)

The one-hour average NO_x (expressed as NO₂) emission concentration during the sampling period was 80 parts per million (ppm) and when corrected to 5% O₂ was 238 mg/m³. This emission concentration was in compliance with the Co-generation EPL NO_x concentration limit of 250 mg/m³ at 5% O₂. Refer to Table 3-1 and Figure B-1 in Appendix B for detailed results in tabulated and graphical formats respectively.

3.3 VOLATILE ORGANIC COMPOUNDS

The sum of the total VOC emission concentrations in the suite of 73 analytes is reported as n-propane equivalent as required by the NSW OEH Approved Methods and POEO (Clean Air) Regulation 2010.

The measured total VOCs emission concentration (as n-propane) corrected to $5\% O_2$ was less than 6.19 mg/m^3 which was *in compliance* with EPL concentration emission limit of 40 mg/m^3 . Refer to Table 3-1 and Appendix C for details.

Parameter	Unit	EPL ID No.7 Average Result	EPL Concentration Limit
Temperature	٥C	296	
Pressure	kPa	101.0	
Velocity	m/s	27.3	
Volumetric Flow	m³/s	2.16	
Moisture	%	8.6	
Molecular Weight Dry Stack Gas	g/g mole	29.425	
Gas Density	kg/m ³	1.31	
Nitrogen Oxides	mg/m ³ @ 5% O ₂	238	250
Oxygen	%	9.9	
Volatile Organic Compounds	mg/m ³ @ 5% O ₂ as n-propane equiv.	< 6.19	40

TABLE 3-1 SUMMARY OF AVERAGE EMISSION TEST RESULTS

Key:		
°C	=	degrees Celsius
<	=	less than
*	=	reported as n-propane equivalent
%	=	percentage
EPA	=	Environment Protection Authority
EPL	=	Environment Protection Licence
kg/m ³	=	kilograms per cubic metre
kPa	=	kilo Pascals
g/g mole	=	grams per gram mole
m³/s	=	dry cubic metre per second 0°C and 101.3 kilopascals (kPa)
m/s	=	metres per second
mg/m ³	=	milligrams per cubic metre at 0°C and 101.3 kilopascals (kPa)

4 CONCLUSIONS

From the data presented and test work conducted during typical production, the following conclusions were drawn for the stack emissions:

- The one-hour average NO_x emission concentration corrected to 5% O₂ was 238 mg/m³, which was in compliance with the EPL NO_x emission limit of 250 mg/m³.
- This NO_x emission concentration was also in compliance with the OEH Interim Co-generation Policy NO_x concentration limit corrected to 5% O₂.
- The VOC emission concentration corrected to 5% O₂ was less than 6.19 mg/m³, which was in compliance with the EPL VOC emission limit of 40 mg/m³ (expressed as n-propane).

Page 5

5 TEST METHODS

5.1 EXHAUST GAS VELOCITY AND TEMPERATURE

(OEH NSW TM-1 & 2)

Velocity profiles were obtained across each stack utilising an Airflow Developments Ltd. S-type pitot tube and digital manometer. Where practicable, each sampling plane complied with AS4323.1.

The exhaust gas temperature was measured using a Digital thermometer (0-1200°C) connected to a chromel/alumel (K-type) thermocouple probe.

5.2 CONTINUOUS GASEOUS ANALYSIS

(OEH NSW TM-11, 24, 25 & 32)

Sampling and analysis of exhaust gas were performed using one of Stephenson Environmental Management Australia's mobile combustion and environmental monitoring laboratories. Emission gases were distributed to the analysers via a manifold. Flue gas from each stack was pumped continuously. The following components of the laboratory were relevant to this work:

Oxides of Nitrogen	Testo 350XL
Oxygen	Testo 350XL
Carbon Dioxide	Testo 350XL
Calibration	BOC / Air Liquide Special Gas Mixtures relevant for each analyser. Instrument calibrations were performed at the start and finish of sampling at each location.
QA/QC	Calibration (Zero/Span) checks
	Sample line integrity calibration check

5.3 VOLATILE ORGANIC COMPOUNDS (VOCS)

(*OEH NSW TM-34*)

A sample of stack air is drawn onto a carbon adsorption tube and analysed using Gas Chromatography/Mass Spectrometry (GC/MS) performed by the NATA accredited laboratory TestSafe Australia, accreditation number, 3726.

5.4 MEASUREMENT OF UNCERTAINTY

All results are quoted on a dry basis. SEMA has adopted the following (Table 5-1) uncertainties for various stack testing methods.

Pollutant	Methods	Uncertainty
Moisture	AS4323.2, TM-22, USEPA 4	25%
Nitrogen Oxides	NSW TM-11, USEPA 7E	15%
Oxygen a	NSW TM-24, USEPA 3A	1% actual
Velocity	AS4323.1, TM-2, USEPA 2	5%
Volatile Organic Compounds (adsorption tube)	TM-34, USEPA M18	25%

TABLE 5-1 MEASUREMENT OF UNCERTAINITY

Key:

Unless otherwise indicated the uncertainties quoted have been determined @ 95% level of Confidence level (i.e. by multiplying the repeatability standard deviation by a co-efficient equal to 1.96) (Source – Measurement Uncertainty)

Sources: Measurement Uncertainty – implications for the enforcement of emission limits by Maciek Lewandowski (Environment Agency) & Michael Woodfield (AEAT) UK

Technical Guidance Note (Monitoring) M2 Monitoring of stack emissions to air Environment Agency Version 3.1 June 2005.

APPENDIX A – EMISSION TEST RESULTS

Glossary:

2		
%	=	percent
°C	=	Degrees Celsius
am³/min	=	cubic metre of gas at actual conditions per minute
Normal Volume (m ³)	=	cubic metre at 0°C and 760 mm pressure and 1 atmosphere
am ³	=	cubic metre of gas at actual conditions
g/g mole	=	grams per gram mole
g/s	=	grams per second
hrs	=	hours
kg/m ³	=	kilograms per cubic metre
kPa	=	kilo Pascals
m ²	=	square metre
m/s	=	metre per second
m ³ /sec	=	cubic metre per second at 0°C and 1 atmosphere
mg	=	milligrams
mg/ m ³	=	milligrams per cubic metre at 0°C and 1 atmosphere
O ₂	=	Oxygen
SEMA	=	Stephenson Environmental Management Australia
VOC	=	Volatile Organic Compounds
Abbreviations of Perso	nnel	
PWS	=	Peter Stephenson
AM	=	Argyll McGhie
AP	=	Alok Pradhan
AN	=	Ali Naghizadeh

Emission Test Results	Flow		
Project Number	5449		
Project Name	Tooheys		
Test Location	EPA ID Point No.7 - Gas Engine		
Date	4 December 2014		
RUN	1		
Sample Start Time (hrs)	6:10		
Sample Finish Time (hrs)	8:03		
Sample Location (Inlet/Exhaust)	Exhaust		
Stack Temperature (°C)	296.0		
Stack Cross-Sectional area (m ²)	0.181		
Average Stack Gas Velocity (m/s)	27.3		
Actual Gas Flow Volume (am ³ /min)	296		
Total Normal Gas Flow Volume (m ³ /min)	130		
Total Normal Gas Flow Volume (m ³ /sec)	2.16		
Total Stack Pressure (kPa)	101.0		
Moisture Content (% by volume)	8.6		
Molecular Weight Dry Stack Gas (g/g-mole)	29.425		
Dry Gas Density (kg/m ³)	1.31		
Oxygen (Grab Sample) (%)	9.89		
Carbon Dioxide (Grab Sample) (%)	6.44		
Sampling Performed by	PWS, AM, AP		
Sample Analysed by (Laboratory)	SEMA		
Calculations Entered by	AN		
Calculations Checked by	AP		
VOCs Sample Start Time:	7:03		
VOCs Sample Finish Time:	8:03		
Sampling Period (min):	60		
SEMA Sample No.:	724370		
Concentration (mg/m ³) @ 5% O ₂	< 6.49		
Concentration as n-prop. Equiv. (mg/m^3) @ 5% O ₂	<6.19		

TABLE A-1 EMISSION TEST RESULTS - EPL ID NO.7 - FLOW & VOCS

APPENDIX B – CONTINUOUS LOGGED DATA

APPENDIX C - NATA ENDORSED TEST REPORT

CHEMICAL ANALYSIS BRANCH

Alok Pradhan Lab. Reference: 2014-2920 Stephenson Environmental Management Australia PO Box 6398 SILVERWATER NSW 1811

SAMPLE ORIGIN: 5449

DATE OF INVESTIGATION: 04/12/2014 DATE RECEIVED: 5/12/14

ANALYSIS REQUIRED: VOC Screen

REPORT OF ANALYSIS

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the NATA signatory whose signature appears below.

For all administrative or account details please contact Jeanine Wells.

Martin Mazereeuw Manager 6 Date: 8/12/14

MAILED 8/12

WorkCover NSW Chemical Analysis Branch ABN 77 682 742 966 L2, Bidg 1, 9-15 Chilvers Road Thornleigh NSW 2120 AUSTRALIA T: +61 2 9473 4000 F: +61 2 9980 6849 E: ab@workcover.nsw.gov.au WorkCover Assistance Service: 13 10 50 W: www.workcover.nsw.gov.au

Accredited for compliance with ISO/IEC 17025

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
		12203230	µg/se	ection	200	0.035030350	20050200	µg/se	ction
1	Aliphatic hydrocarbon	IS (LOD-feelo	erpoquilius	6a)	Î	Aromatic hydrocarbon	s (LOD = Lugin	reposed wert	int)
1	2-Methylbutune	78-78-6	ND	ND	39	Buszene	71-43-3	ND	ND
2	n-Pentine	169-65-0	ND	ND	40	Ethylbenzene	100-11-1	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	43	Isopropy/benzene	98-82-8	ND	NÐ
4	3-Mathylpentana	96-14-0	ND	ND	42	1,2,3-Trimethylbeczene	326-73-8	ND	ND
5	Cyclopentane	187-92-3	ND	ND	41	1,2,4-Trimethylberzene	25-61-6	ND	ND
6	Methyloyulopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbeszete	108-67-8	ND	ND
7	2,3-Dimethylpestane	365-59-3	ND	ND	45	Styrene	100-12-5	ND	ND
1	n-Hexone	110-54-5	ND	ND	46	Toluene	108-58-3	ND	ND
9	3-Methylhexand	389-31-1	ND	ND	47	p-Xylana &/or m-Xylana	106.42.4.8 106.48.4	ND	ND
10	Cyclohesane	110-8-27	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylicyclohexane	108-87-2	ND	ND		Ketones (Lon vis, 454 a 455	Spightly, #58, #5	1,452 8,453	-25.eg/c30
12	2,2,4-Trimethylpestane	540-84-1	ND	ND	49	Acologe	62-64-1	ND	ND
13	n-Hepiane	112-82-5	ND	ND	50	Accel	313-86-8	ND	ND
14	a-Octane	111-65-9	ND	ND	.51	Discetone aloohof	123-42-2	ND	ND
15	a-Nonane	111-84-2	ND	ND	52	Cyclohexanone	105-24-1	ND	ND
16	a-Decane	124-18-5	ND	ND	\$3	laophorone	78-59-1	ND	ND
17	e-Undecane	1120-21-4	ND	ND	54	Methyl ethyl kelone (MEK)	78-93-3	ND	ND
18	n-Dodecant	117-10-1	ND	ND.	55	Methyl isobutyl ketoor (MRR)	108-10-1	ND	ND
19	p-Tridecane	629-50-5	ND	ND		Alcohols (1.08 - 25gcompossibution)			
20	n-Tetradecase	629.59.4	ND.	ND	56	Edget alcohol	64-17-5	ND	ND
21	o-Pisene	80-56-8	ND	ND	57	n-Butyl elcohol	71-36-3	ND	ND
22	β-Pinese	127-91-3	ND	ND	58	Isobutyl skohol	78-83-7	ND	ND
23	D-Linionene	138-86-3	ND	ND	59	loopropyl alcohol	67-63-0	ND	ND
-	Chlorinated hydrocarbons (Los-5p			Section)	60	2-Bbyl heranol	184-76-7	ND	ND
24	Dichloromethase	25-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD - 15ag/compo	and/section)		
26	1,2-Dichlorechane	107-06-2	ND	ND	62	Ethyl weste	141-78-6	ND	ND
27	Chloraform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1,1,2-Trichloreethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	1/0-19-0	ND	ND
30	Trichloroethylese	79-07-6	ND	ND		Ethers (LOD - 25pgvoepeter	disortion)	1.2.4	
21	Carbon tetrachloride	56-23-5	ND	ND	66	Eihgliether	60-29-7	ND	ND
32	Perchlaroethyliana	129-18-1	ND	ND	67	Ant-Build methyl ethic come-	1634-94-4	ND	ND.
33	1,1,2,2-Tetrachloroethane	29-34-5	ND	ND	68	Tetrahydroforan (TFF)	109-99-9	ND	ND
34	Chlorobenzese	108-99-7	ND	ND		Glycols 0.00 - 15pp/compose	(mitterilien)		
35	1,2-Dichlorobenziene	95-50-1	ND	ND	69	PGME	107-98-2	ND	ND
36	1,4-Dichlorobeszene	106-16-7	ND	ND	70	Ethylene glynni diethyl ether	629-14-1	ND	ND
	Miscellancous glosser	Seg & 435-25eg		and and	71	PGMEA	108-65-6	ND	ND
37	Acctenite	75-03-8	ND	ND	72	Cellosofve azztate	111-13.8	ND	ND
38	n-Vinyl-2-pynolidinme	88-12-0	ND	ND	73	DOMEA	112-15-2	ND	ND
-	P	1	457	MD		Workshaat shark		VPS	VPS

2014-2920 slies

Page 2 of 3

TestSafe Australia – WorkCover NSW Chem/cal Analysis Branch WorkCover NSW ABN/77-682 742 968 L2, Building 1, 9-15 Chilvers Rd, Thornleigh, NSW 2120 Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: <u>lab@workcover.nsw.gov.au</u> Website: <u>testsafe.com.au/chemical.asp</u> WorkCover Assistance Service 13 10 50

WC03147NATA 0614

For additional comparate with MOMEC 17926

Accredited for compliance with ISO/IEC 17025

Analysis of Volatile Organic Compounds in Workplace Air by GC/MS

Client : Alak Pradhan

Stephenson Environmental Management Australia

ND – Net Detected VOCo – Vehile Organic Compounds Method Analysis of Volatile Organic Compounds in Workplace Air by Gas Chromatography/Mass Spectrometry Method Namires: WCA 200 Detection Limit : Suppression, Zsyghestion, Browpland hydrosichore except acetore, MEX and MIBK at Spg/section and anomatic hydrosubon at 1 gastration. Brief Description : Volatile organic compounds are tred released for mit the Aterocal in the laboratory with CS₂. An aliquet of meantaring party many. The vehicle organic compounds are tred released for mit the Aterocal in the laboratory with CS₂. An aliquet of the describant is analysed by capillary gas chromatography with mass spectrometry detection.

The Total Volatile Organic Compounds (TVOC) test result in ug/section is calculated by combining the determined values of the 35 compounds with other VOCs that have been identified by mass spectrometry in the sample. These extra VOCs were individually satimated by the response of the nearest internal standard to that compound. Therefore, the TVOC test result should be interprieted as a sem-quantitative gaide to the smouth of VGCs present. If the TVOC test result should all the compounds quantified them the can indicate that there are idditional compounds present other than the addition of anyone of the proposed quantified them the can indicate that there are idditional compounds present other than the 73 quantified compounds reported.

PGME : Propylene Glycol Monomethyl Ether PGMEA : Propylene Glycol Monomethyl Ether Acetate DGMEA : Dichtylese Glycol Monoethyl Ether Acetate

Measurement Uncertainty The measurement uncertainty is an estimate that characterises the range of values within which the true value is asserted to lie. The uncertainty estimate is an expanded uncertainty using a coverage factor of 2, which gives a level of confidence of approximately 95%. The estimate in compliant with the "SSO Glade to the Expression of Uncertainty in Measurement" and is a full estimate based on us shows method validations and quility control data.

Quality: Assurance Quality: Assurance In order to reaser the highest degree of assuracy and precision in our analytical results, we undertake extensive intra- and inter-lander to reaser the highest degree of assuracy and precision in our analytical results, we undertake extensive intra-and inter-lander and inter-tible assuracy quality assurance (DA) scientifies. Within our coin laboratory, we analyte laboratory and field blacks and perform any laboratory quality assurance (DA) scientifies. Within our coin laboratory and field blacks and perform any laboratory and the assuracy of the analyses. WorkCrever Laboratory Services has participated for many years in several noticeal and international inter-laboratory comparison topograms listed bedrow-C: Workplace Analysis Scheme for Proficiency (WASP) conducted by the Health & Safety Executive UK; Quality Management in Coequational and Environmental Medicines (A) Program, conducted by the Health de Goespational, Social and Environmental Medicine, University of Erdengae – Naronheag, Gaemany, Quality Carlori Technologies (A) Program, Avertalian.

2014-2920.stsx

Page 3 of 3

TestSafe Australia - WorkCover NSW Chemical Analysis Branch VerkCover NSW ABN 77 682 742 966 LZ, Building 1, 9-15 Chivers Rd, Thornleigh, NSW 2120 Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: <u>lab@workcover.nsw.gov.au</u> Website: <u>testsafe.com.au/chemical.asp</u> WorkCover Assistance Service 13 10 50

WC03147NATA 0614

Accredited for compliance with ISO/IEC 17025

APPENDIX D – PRODUCTION DATA

Screenshot

12/06/2010 - 2nd eng 09/2014 PLC-date = 04.12.2014 07:40:01 PLC release = 2.29.43 Comment: Toohey's

Number of faults = 0

Number of alarms = 0

Operation hours = 23354

Number: 9296876 Engine type: TCG2020V20

Actual load = 2008 kW Actual speed = 1500.4 1/min Starts = 1623

Control Control Control		600	H	らら	Ö	123 456 789	\square		\sim
Cisibal Cisibal Estation 0			ľ					40 haurs	
Control for the sector of t								Display	
CR0.1 Zensont decke 201 Ed0.1 Zensont decke 201 E19.1 Zer, power 201 201 Endod E19.1 Zer, power 201 Endod Endod E19.1 Zer, power 200 0 0 OS 00 00.00 0.100 0 0 OS 00 00.00 0.100 0 0 On total 0 0 0 0								Selection	
E10.1 Demonstanting E10.1 Commentanting E10.2 Surpress 31 E10.1 Surpress 32									
CEINE LACE DOWNE 331 ERELATIONE 331 ERELATIONE 331 CEINE LACE DOWNE 331 ERELATIONE 331 ERELATIONE 331 CEINE LACE DOWNE ADDITION ADDITION ADDITION ADDITION ADDITION				E109.7 D					
Image: Set of the set of th	, , ,	, , ,	I	E198.24	^g ot. power		99.4	 Reload 	
Cont Absolute time Cyport Cyport				LE190.4 C	Set power		99:4 1	 Update 	
Coont Coont Coont Coont Coont Coont Coont Coont Coont Coont Coont Coont Coont Coont Consol Control value limit stop warm Consol Consol								 Absoluti 	e time
Cos 300 Os 300 Os 300 Os 300 Os 300 Os 300 Os 300 Os 300 Os 300 Os 300 Os 41 2 2014 - 0738:00 Os 300 Os 300 Os 300								Export	
Condition Print inition 05.00 06.00 07.00 05.00 07.00 07.00 04.12.2014-07.38:00 0.10% Dead run 2008.KM 0								Save	
Image: Load run 2008.twl Image: Load run Print instruy 04.12.2014 · 07.38:00 06.00 07.000 0.4.12.2014 · 07.38:00									
Load run 2008 kW 0 NK control valve limit stop warm								Print his	tory
05.00 06.00. 07.00. 07.00. 07.00. 0.10% 04.12.2014 · 07.38:00 07.00. 07.00. 07.00. 0.100 v 10.04 · 1.1 0.10 · 1.1 0.100 v 0.100 v									
OS 00 06.00 07:00 OS 00 Cursor								0 100%	
05.00 06.00 07.00 cursor cursor 04.12.2014 07.38:00 e Vindow vindow<								🔵 Pause	
05.00 06.00. 07.00. 07.00. 07.00. 2014-07.36.00 < Window Window Screenshot Screenshot Screenshot Screenshot Screenshot 04.12.2014 Window Screenshot 04.12.2014 Wi	- - - - - -	-						< Cursor	Cursor >
Load run 2008 kW 0 NK control valve limit stop warm 04.12.2014	05.00. 06.00:	07:00: 04:19:2014 -	00-98-00					< Window	Window >
Load run 2008 kW 0 0 NK control valve limit stop warm 04.12.2014		1107771110	00°00° IO	Π				Screens	hat
Load run 2008 kW 0 0 NK control valve limit stop warm 04.12.2014			I	I	I	I		I	I
	Load run 200	3 KW 0 0	NK cont	rol valve	limit sto	p warm		04.1	2.2014 MW

APPENDIX E – INSTRUMENT CALIBRATION DETAILS

SEMA Asset No.	Equipment Description	Date Last Calibrated	Calibration Due Date				
859	Digital Temperature Reader	20-Aug-2014	20-Feb-2015				
863	Thermocouple	20-Aug-2014	20-Feb-2015				
885	Digital Manometer	14-Mar-2014	14-Mar-2015				
726	Pitot	19-Jun-2014	19-Jun-2015 Visually inspected On-Site before use				
928	Balance	23-Apr-2014	Response Check with SEMA Site Mass				
705	Field Mass For Calibration	20-Aug-2014	20-Aug-2015				
932	Personal Sampler	16-Oct-2014	16-Oct-2015				
846	Stopwatch	28-Mar-2014	28-Mar-2015				
811	Flue Gas Analyser	11-Sep-2014	11-Mar-2015				
Gas Mixtures used for Analyser Span Response							
Conc.	Mixture	Cylinder No.	Expiry Date				
1080ppm 10.0% 10.2%	Carbon Monoxide Carbon Dioxide Oxygen In Nitrogen	454288	13-Jul-2016				
441ppm 443ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen	437883	4-Apr-2017				
243 ppm 247 ppm	Nitric Oxide Total Oxide Of Nitrogen In Nitrogen	ALTN1892	20-Aug-2019				

TABLE E-1 INSTRUMENT CALIBRATION DETAILS

APPENDIX F - STACK SAMPLING LOCATION

FIGURE F-1 CO-GENERATION ENGINE STACK – EPA ID NO. 7

In the absence of cyclonic flow activity ideal sampling plane conditions will be found to exist at 6-8 duct diameters downstream and 2-3 duct diameters upstream from a flow disturbance. The sampling plane does not meet this criterion. Additional sample points were used in compliance with AS4323.1 as the sampling plane was non-ideal.

However the sample plane does meet the minimum sampling plane position; sampling plane conditions will be found to exit at 2 duct diameters downstream and 0.5 duct diameters upstream from a flow disturbance.

The location of the sampling plane complies with AS4323.1 temperature, velocity and gas flow profile criteria for sampling.

APPENDIX G - OEH - CO-GENERATION AND TRI-GENERATION DOCUMENT

1. Cogeneration and tri-generation

Cogeneration is the simultaneous generation in one process of thermal energy and electrical and/or mechanical energy¹. Cogeneration is also referred to as combined heat and power (CHP) and makes productive use of the heat that is normally rejected as waste in conventional generators.

Trigeneration is the simultaneous production of electrical and/or mechanical energy, heat and cooling from a single heat source. It can also be referred to as combined heat, cooling and power (CHCP).

¹ Source: DIRECTIVE 2004/8/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market and amending Directive 92/42/EEC

2. Interim NO_x policy for cogeneration

OEH released the Interim NO_X Policy for Cogeneration in Sydney and the Illawarra which sets out a framework for how we are currently dealing with emissions from cogeneration and tri-generation proposals.

One of the concepts introduced in the interim policy is best available techniques (BAT) emission performance. The interim policy does not define what emission performance is consistent with BAT for cogeneration and tri-generation.

3. What do we define as BAT?

BAT covers all aspects of a proposal including fuel source, technology selection and controls. The concept of BAT is a key principle in the European Union Directive on Integrated Pollution Prevention and Control.

Best available techniques shall mean the most effective and advanced stage in the development of activities and their methods of operation which indicate the practical suitability of particular techniques for providing in principle the basis for emission limit values designed to prevent and, where that is not practicable, generally to reduce emissions and the impact on the environment as a whole:

Best shall mean most effective in achieving a high general level of protection of the environment as a whole.

Available techniques shall mean those developed on a scale which allows implementation in the relevant industrial sector, under economically and technically viable conditions, taking into consideration the costs and advantages, whether or not the techniques are used or produced inside the Member State in question, as long as they are reasonably accessible to the operator.

Techniques shall include both the technology used and the way in which the installation is designed, built, maintained, operated and decommissioned.

Source: DIRECTIVE 2008/1/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15 January 2008 concerning integrated pollution prevention and control

4. What do we define as BAT for natural gas fired reciprocating internal combustion engines?

The NO_x emission standard considered by OEH to be BAT for natural gas fired reciprocating internal combustion engines with a capacity to burn less than 7 mega joules of fuel per second are outlined in Table 1. A financial analysis of NO_x controls on gas fired reciprocating engines was used to develop the BAT emission standards².

² Source: SKM 2009, Department of Environment and Climate Change (NSW) Financial Analysis of NOX Controls on Gas Fired Reciprocating Engines, Sinclair Knight Merz, June 2009

5. Table 1: NO_x BAT emission standard for natural gas fired reciprocating internal combustion engines with a capacity to burn less than 7 mega joules of fuel per second

Activity or plant	Air impurity	Region	Emission standard
			mg/m ^{3 *}
Any natural gas fired stationary reciprocating internal combustion engine	Nitrogen dioxide (NO ₂) or nitric oxide (NO) or both, as NO_2 equivalent	Sydney and Wollongong Metropolitan Area [#] and Wollondilly Local Government Area	250

* Reference conditions: Dry, 273 K, 101.3kPa, 5% O₂
Defined in the Protection of the Environment Operations (Clean Air)
Regulation 2010

6. Discussion of BAT emission standards

A NO_x emission standard of 250 mg/m³ applies to all natural gas fired reciprocating internal combustion engines with a capacity to burn less than 7 mega joules of fuel per second in the Sydney and Wollongong Metropolitan Area and Wollondilly Local Government Area. Controlling NO_x emissions to 250 mg/m³ has been found to have a minor impact on project financial performance and is unlikely to impact on project viability. The marginal reduction in financial performance is due to the slightly higher fuel consumption².

Outside of the Sydney and Wollongong Metropolitan Area and Wollondilly Local Government Area the NO_x emission standard is 450 mg/m³, as defined in the *Protection of the Environment Operations (Clean Air) Regulation 2010.* A more stringent NO_x emission standard is only needed in the Sydney and Wollongong Metropolitan Area and Wollondilly Local Government Area as air quality in these regions currently exceeds the National Environment Protection Measure for Ambient Air Quality (Air NEPM) goal for ozone.

A NO_x emission standard for natural gas fired reciprocating internal combustion engines with a capacity to burn greater than or equal to 7 mega joules of fuel per second has not been proposed. This will be determined on a case by case basis.

In cogeneration and tri-generation applications, the financial viability of post combustion controls to reduce NO_x emissions to less than 250 mg/m³ has been shown to improve as the capacity of the engine increases². In cogeneration applications, post combustion controls are likely to be financially viable at approximately 1,000 kW of electrical output (or a capacity to burn approximately 3 mega joules of fuel per second) whereas in tri-generation applications the financially viable minimum size for post combustion controls is likely to be in excess of 10,000 kW of electrical output (or a capacity to burn greater than approximately 30 mega joules of fuel per second).

OEH should be contacted for the specific requirements for natural gas fired reciprocating internal combustion engines with a capacity to burn greater than or equal to 7 mega joules of fuel per second.

² Source: SKM 2009, Department of Environment and Climate Change (NSW) Financial Analysis of NOX Controls on Gas Fired Reciprocating Engines, Sinclair Knight Merz, June 2009

7. Why has BAT only been defined for natural gas fired reciprocating internal combustion engines?

OEH has firstly defined BAT for natural gas fired reciprocating internal combustion engines due to the significant interest in its installation in cogeneration and tri-generation applications. BAT will be developed for other technologies and industries on a case by case basis.

8. Do local air quality impacts still need to be considered?

Yes, local air quality impacts still need to be considered even if emissions performance is consistent with BAT.

Emission standards do not take into account site-specific features such as meteorology, background air quality, and other influences such as terrain and building downwash and therefore do not necessarily protect against adverse air quality impacts in the surrounding area. Depending on the sensitivity of the local receiving environment, an item of plant may need to meet emission standards tighter than BAT.

The impact of emissions from activities and plant is determined through an air quality impact assessment which is to be conducted in accordance with the <u>Approved Methods for the Modelling</u> and Assessment of Air Pollutants in NSW.

9. What's happening with the interim NO_x policy for cogeneration?

OEH is continuing to progress the broad framework introduced in the interim policy. Keep a look out for updates to the OEH website on progress with the interim policy and opportunities to provide comments.